
Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 24

Simulating the Cloud using CloudSim
with NetBeans

Dr.M.Moorthy

Master of Computer Applications

Muthayammal Engineering College

Rasipuram, India

Director.mca@mec.edu.in

Abstract: Cloud computing is a paradigm of large scale distributed computing which is a

repackaging of various existing concepts/technologies such as utility computing, Grid

computing, Autonomic computing, Virtualization and Internet technologies. To assess the

performance of cloud environment, cloud simulators play an important role as it is a

challenging task to perform experiments on the real cloud (which would incur huge cost in

terms of currency if experiments are repeated). This paper describes the CloudSim

architecture, design and implementation of CloudSim, Simulation data flow, CloudSim

code, and experimental results.

Keywords— Cloud Computing, CloudSim simulator, Data Center, VM Scheduler, and

Host.

I. INTRODUCTION

Cloud Computing infrastructure is different from Grid Computing. It is the massive deployment

of Virtualization technologies and tools. Hence, as compared to Grid, Cloud has an extra layer as

Virtualization that acts as an execution and hosting environment for cloud-based application

services. To secure data in cloud is really very tough job. To understand the cloud computing we

need to first understand how these resources are placed in the cloud. Cloud Computing has

basically two parts, the First part is of Client Side and the second part is of Server Side. The

Client Side requests to the Servers and the Server responds to the Clients. The request from the

client firstly goes to the Master Processor of the Server Side. The Master Processor have many

Slave Processors, the master processor sends that request to any one of the Slave Processor

which is free at that time. All Processors are busy in their assigned job and none of the Processor

gets Idle. Simulation opens the possibility to evaluate the hypothesis prior to actual software

development in an environment where one can reproduce tests. Why we need simulation because

it provides repeatable and controllable environment to test the services. It tunes the system

bottlenecks before deploying on real clouds. For simulation we need a special toolkit named

CloudSim. It is basically a Library for Simulation of Cloud Computing Scenarios. It has some

features such as it support for modeling and simulation of large scale Cloud Computing

infrastructure, including data centers on a single physical computing node. It provides basic

classes for describing data centers, virtual machines, applications, users, computational

resources, and policies.

CloudSim supports VM Scheduling at two levels: First, at the host level where it is possible to

specify how much of the overall processing power of each core in a host will be assigned at each

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 25

VM. And the second, at the VM level, where the VMs assign specific amount of the available

processing power to the individual task units that are hosted within its execution engine.

The rest of this paper is organized as follows: Related work is discussed in section II, CloudSim

Architecture is discussed in section III, Design and Implementation of CloudSim is discussed in

section IV, Simulation data flow is discussed in section V. Experimental setup and Result is

discussed in section VI. And section VII gives conclusion.

II. RELATED WORK

David S. Linthicum [1] described about the basic information about the Cloud Computing and its

various services and models like SaaS, IaaS, PaaS. He also described about the deploying models

of Cloud Computing and Virtualization services.

Michael Miller [2] described about the various web based application related to Cloud

Computing.

R.Bajaj and D.P. Agrawal [3] described about the Scheduling. They said Scheduling is a process

of finding the efficient mapping of tasks to the suitable resources so that execution can be

completed such as minimization of execution time as specified by customers. They described

various types of Scheduling like Static, Dynamic, Centralized, Hierarchical, Distributed,

Cooperative, Non-Cooperative Scheduling. They also described Scheduling problem in Cloud

and the types of users like CCU (Cloud Computing Customers) and CCSP (Cloud Computing

Service Providers).

R.N.Calheiros, Rajiv Ranjan, Anton Beloglazov, C.A.F. De Rose, Rajkumar Buyya [4] described

about the Simulation techniques and the CloudSim. They described the various features of

CloudSim like it supports for modelling and simulation for large scale of cloud computing

infrastructure including data centers on a single physical computing node.

J.Li, M. Qiu, X. Qin [5] described about the optimization criterion that is used when making

scheduling decision and represents the goals of the scheduling process. The criterion is expressed

by the value of objective function which allows us to measure the quality of computed solution

and compare it with different solution.

C.H.Hsu and T. L. Chen [6] described about the Quality of Service that is the ability to provide

different jobs and users, or to guarantee a certain level of performance to a job. If the QoS

mechanism is supported it allows the user to specify desired performance for their jobs. In

system with limited resources the QoS support results in additional cost which is related to the

complexity of QoS requests and the efficiency of the scheduler when dealing with them.

Gaetano F.Anastasi, Emanuele Carlini, and Patrizio Dazzi[7] proposed a model of application

and cloud resources targeting the contrail platforms using CloudSim simulator.

R.Kannika Devi and S.Sujan[8] discussed about general issues in cloud infrastructure and

provided the survey of research works carried out using CloudSim toolkit.

S.M.Ranbhise and K.K.Joshi[9] described the CloudSim architecture, need for CloudSim,

CloudSim code, and experimental results.

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 26

Baptiste Louis, Karan Mithra, Saguna and Saguna[10] proposed a scalable module for modeling

and simulation of energy aware storage in cloud systems. Results were produced according to the

proposed model using CloudSim simulator.

Law Siew Xue,Nazatul Aini Ahd Majid, and Elangovan A.Sundarajan[11] suggested using PCA

and Clustering model to find out the most appropriate and suitable host for allocating VM.

Results were obtained using CloudSim simulator. The parameters took into consideration were

host RAM,MIPS,storage and bandwidth.

Hanan Ali Al-shehri and Khaoula Hamdi[12] described the optimization of the virtual machines

placement is considered with the objective of improving the energy efficiency. An Ant Colony

Algorithm is proposed with multiple objectives. Three objectives were optimized: minimizing

the number of used physical machines, minimizing the generated network traffic and maximizing

the resources utilization. Three resources were considered: CPU, memory and bandwidth. The

algorithm was tested on random instances and CloudSim toolkit is used to simulate the results.

III. CLOUDSIM ARCHITECUTURE

Figure-1: CloudSim layered Architecture

In Figure-1, the CloudSim simulation layer provides support for modeling and simulation of

virtualized Cloud-based data center environments including dedicated management interfaces for

VMs, memory, storage, and bandwidth. The fundamental issues, such as provisioning of hosts to

VMs, managing application execution, and monitoring dynamic system state, are handled by this

layer. A Cloud provider, who wants to study the efficiency of different policies in allocating its

hosts to VMs (VM provisioning), would need to implement his strategies at this layer. Such

implementation can be done by programmatically extending the core VM provisioning

functionality. There is a clear distinction at this layer related to provisioning of hosts to VMs. A

Cloud host can be concurrently allocated to a set of VMs that execute applications based on SaaS

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 27

provider’s defined QoS levels. This layer also exposes the functionalities that a Cloud

application developer can extend to perform complex workload profiling and application

performance study. The top-most layer in the CloudSim stack is the User Code that exposes

basic entities for hosts (number of machines, their specification, and so on), applications (number

of tasks and their requirements), VMs, number of users and their application types, and broker

scheduling policies. By extending the basic entities given at this layer, a Cloud application

developer can perform the following activities: (i) generate a mix of workload request

distributions, application configurations; (ii) model Cloud availability scenarios and perform

robust tests based on the custom configurations; and (iii) implement custom application

provisioning techniques for clouds and their federation.

IV. DESIGN AND IMPLEMENTATION OF CLOUDSIM

Figure-2: CloudSim class design diagram

In Figure-2, we provide the finer details related to the fundamental classes of CloudSim, which

are also the building blocks of the simulator. The overall Class design diagram for CloudSim is

shown in Figure x.

BwProvisioner: This is an abstract class that models the policy for provisioning of bandwidth to

VMs. The main role of this component is to undertake the allocation of network bandwidths to a

set of competing VMs that are deployed across the data center. Cloud system developers and

researchers can extend this class with their own policies (priority, QoS) to reflect the needs of

their applications. The BwProvisioningSimple allows a VM to reserve as much bandwidth as

required;however, this is constrained by the total available bandwidth of the host.

CloudCoordinator: This abstract class extends a Cloud-based data center to the federation. It is

responsible for periodically monitoring the internal state of data center resources and based on

that it undertakes dynamic load-shredding decisions. Concrete implementation of this component

includes the specific sensors and the policy that should be followed during load-shredding.

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 28

Monitoring of data center resources is performed by the updateDatacenter() method by sending

queries Sensors. Service/Resource Discovery is realized in the setDatacenter()abstract method

that can be extended for implementing custom protocols and mechanisms (multicast, broadcast,

peer-to-peer). Further, this component can also be extended for simulating Cloud-based services

such as the Amazon EC2 Load-Balancer. Developers aiming to deploy their application services

across multiple clouds can extend this class for implementing their custom inter-cloud

provisioning policies.

Cloudlet: This class models the Cloud-based application services (such as content delivery,

social networking, and business workflow). CloudSim orchestrates the complexity of an

application in terms of its computational requirements. Every application service has a pre-

assigned instruction length and data transfer (both pre and post fetches) overhead that it needs to

undertake during its life cycle. This class can also be extended to support modeling of other

performance and composition metrics for applications such as transactions in database-oriented

applications.

CloudletScheduler: This abstract class is extended by the implementation of different policies

that determine the share of processing power among Cloudlets in a VM. As described

previously,two types of provisioning policies are offered: space-shared

(CloudetSchedulerSpaceShared) and time-shared (CloudletSchedulerTimeShared).

Datacenter: This class models the core infrastructure-level services (hardware) that are offered

by Cloud providers (Amazon, Azure, and App Engine). It encapsulates a set of compute hosts

that can either be homogeneous or heterogeneous with respect to their hardware configurations

(memory, cores, capacity, and storage). Furthermore, every Datacenter component instantiates a

generalized application provisioning component that implements a set of policies for allocating

bandwidth, memory, and storage devices to hosts and VMs.

DatacenterBroker or Cloud Broker: This class models a broker, which is responsible for

mediating negotiations between SaaS and Cloud providers; and such negotiations are driven by

QoS requirements. The broker acts on behalf of SaaS providers. It discovers suitable Cloud

service providers by querying the CIS and undertakes online negotiations for allocation of

resources/services that can meet the application’s QoS needs. Researchers and system developers

must extend this class for evaluating and testing custom brokering policies. The difference

between the broker and the CloudCoordinator is that the former represents the customer (i.e.

decisions of these components are made in order to increase user-related performance metrics),

whereas the latter acts on behalf of the data center, i.e. it tries to maximize the overall

performance of the data center, without considering the needs of specific customers.

DatacenterCharacteristics: This class contains configuration information of data center

resources.

Host: This class models a physical resource such as a compute or storage server. It encapsulates

important information such as the amount of memory and storage, a list and type of processing

cores (to represent a multi-core machine), an allocation of policy for sharing the processing

power among VMs, and policies for provisioning memory and bandwidth to the VMs.

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 29

NetworkTopology: This class contains the information for inducing network behavior (latencies)

in the simulation. It stores the topology information, which is generated using the BRITE

topology generator.

RamProvisioner: This is an abstract class that represents the provisioning policy for allocating

primary memory (RAM) to the VMs. The execution and deployment of VM on a host is feasible

only if the RamProvisioner component approves that the host has the required amount of free

memory. The RamProvisionerSimple does not enforce any limitation on the amount of memory

that a VM may request. However, if the request is beyond the available memory capacity, then it

is simply rejected.

SanStorage: This class models a storage area network that is commonly ambient in Cloud-based

data centers for storing large chunks of data (such as Amazon S3, Azure blob storage).

SanStorage implements a simple interface that can be used to simulate storage and retrieval of

any amount of data, subject to the availability of network bandwidth. Accessing files in a SAN at

run-time incurs additional delays for task unit execution; this is due to the additional latencies

that are incurred in transferring the data files through the data center internal network.

Sensor: This interface must be implemented to instantiate a sensor component that can be used

by a CloudCoordinator for monitoring specific performance parameters (energy-consumption,

resource utilization). Recall that, CloudCoordinator utilizes the dynamic performance

information for undertaking load-balancing decisions. The methods defined by this interface are:

(i) set the minimum and maximum thresholds for performance parameter and (ii) periodically

update the measurement. This class can be used to model the real-world services offered by

leading Cloud providers such as Amazon’s CloudWatch and Microsoft Azure’s FabricController.

One data center may instantiate one or more Sensors, each one responsible for monitoring a

specific data center performance parameter.

Vm: This class models a VM, which is managed and hosted by a Cloud host component. Every

VM component has access to a component that stores the following characteristics related to a

VM: accessible memory, processor, storage size, and the VM’s internal provisioning policy that

is extended from an abstract component called the CloudletScheduler.

VmmAllocationPolicy: This abstract class represents a provisioning policy that a VM Monitor

utilizes for allocating VMs to hosts. The chief functionality of the VmmAllocationPolicy is to

select the available host in a data center that meets the memory, storage, and availability

requirement for a VM deployment.

VmScheduler: This is an abstract class implemented by a Host component that models the

policies (space-shared, time-shared) required for allocating processor cores to VMs. The

functionalities of this class can easily be overridden to accommodate application-specific

processor sharing policies.

V. SIMULATION DATA FLOW

Figure-3 depicts the flow of communication among core CloudSim entities. At the beginning of

a simulation, each Datacenter entity registers with the CIS Registry. CIS then provides

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 30

information registry-type functionalities, such as match-making services for mapping

user/brokers, requests to suitable Cloud providers. Next, the DataCenter brokers acting on behalf

of users consult the CIS service to obtain the list of cloud providers who can offer infrastructure

services that match application’s QoS, hardware, and software requirements. In the event of a

match, the DataCenter broker deploys the application with the CIS suggested cloud. The

communication flow described so far relates to the basic flow in a simulated experiment. Some

variations in this flow are possible depending on policies. For example, messages from Brokers

to Datacenters may require a confirmation from other parts of the Datacenter, about the

execution of an action, or about the maximum number of VMs that a user can create.

Figure-3: Simulation data flow

VI. EXPERIMENTAL SETUP AND RESULT

To evaluate the performance of Cloud, results were simulated in Window 7 basic (32-bit), Intel

® Core ™ Duo E6550 Processor, 2.33 GHz of speed with memory of 1 GB and the language

used is Java. First code of Simulation is tested on one Data Center with one Host and run on one

Cloudlet. [Softwares used: JDK version: 1.7, NetBeans 7.0, and CloudSim 3.0.3]

Initialize the CloudSim Package :

int num_user = 1; //number of cloud users

Calendar calendar = Calender.getInstance();

boolean trace_flag = false; //mean trace events

Initialize the CloudSim Library :

CloudSim.init(num_user, calendar, trace_flag);

Create Datacenters : These are the resource providers in CloudSim. We need at least one of them

to run a CloudSim simulation.

Datacenter datacenter0 =createDatacenter(“Datacenter_0”);

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 31

Create Broker :

DatacenterBroker broker = createBroker();

int brokerId = broker.getId();

Create one Virtual machine:

Vmlist = new ArrayList<Vm>();

VM description :

int vmid = 0;

int mips= 1000;

long size = 10000; //image size (MB)

int ram = 512; //vm memory (MB)

iong bw = 1000;

int pesNumber = 1; //number of cpu

String vmm = “Xen”; // VMM name

Figure-4: The main steps in using CloudSim for the simulation.

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 32

Figure-4 shows the main steps involved in cloud simulation

Create VM :

Vm vm = new Vm(vmid, brokerId, mips, pesNumber,ram, bw, size, vmm,

 new CloudletSchedulerTimeShared());

Add the VM to the vmList :

vmList.add(vm1);

Submit vm list to the broker :

Broker.submitVmList(vmList);

Creation of Cloudlets :

cloudLetList = new ArrayList<Cloudlet>();

Cloudlet Properties :

int id = 0;

pesNumber = 1;

long length = 400000;

long fileSize = 300;

long outputSize = 300;

UtilizationModel utilizationModel = newUtilizationModelFull();

Cloudlet cloudlet = new Cloudlet(id, length,pesNumber, fileSize, outputSize, utilizationModel,

 utilizationModel1, utilizationModel1);

Cloudlet.setUserId(brokerId);

Cloudlet.setVmId(vmid);

Add the Cloudlets to the list :

cloudLetList.add(cloudlet1);

Submit cloudlet list to the broker :

Broker.submitCloudletList(cloudLetList);

Start Simulation :

CloudSim.startSimulation();

CloudSim.stopSimulation();

Final step : Print result when simulation is over

List<Cloudlet> newList = broker.getCloudletReceivedList();

printCloudletList(newList);

// Print the debt of each user to each datacenter

Datacenter0.printDebts();

The output of this simulation is :

========== OUTPUT ==========

Cloudlet ID STATUS Data center ID VM ID Time Start Time Finish Time

 0 SUCCESS 2 0 400 0 400

*****PowerDatacenter: Datacenter_0*****

User id Debt

3 35.6

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 33

After increasing the datacenter with two hosts and run two cloudlets on it. The cloudlets run in

VMs with different MIPS requirements. The cloudlets will take different time to complete the

execution depending on the requested VM performance. It prints the following output:

========== OUTPUT ==========

Cloudlet ID STATUS Data center ID VM ID Time Start Time Finish Time

 1 SUCCESS 2 1 80 0 80

 0 SUCCESS 2 0 160 0 160

*****PowerDatacenter: Datacenter_0*****

User id Debt

3 224.8

VII. CONCLUSION

In this paper, I have proposed the code for simulation and shown the various outputs in which the

information about the Cloudlets, Status, Datacenter ID, Virtual Machine ID, Start Time, and

Finish Time is given. And by changing the number of Host, Datacenters and Cloudlets, I have

observed the difference. Cloudsim is the perfect solution for modeling the cloud against scaling

in and scaling out of the infrastructure requirement. Cloud reports are the perfect solution for

costing of the infrastructure, resource utilization, and power consumption of the customized

environment.

REFERENCES

[1] David S. Linthicum “Cloud Computing and SOA Convergence in your Enterprise”, 2011.

[2] Michael Miller, “Cloud Computing Web Based Application” 2012.

[3] R. Bajaj and D.P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous

 Environment, IEEE Transaction on parallel and Distributed Systems”, p. 107-118, 2004.

[4] R. N. Calheiros, Rajiv Ranjan, Anton Beloglazov, C.A.F. De Rose, Rajkumar Buyya,

 “CloudSim: A toolkit for modeling and simulation of cloud computing environments and

 evaluation of resource provisioning algorithms”, Software Practice and Experience, Wiley

 publishers, 2010.

[5] J.Li, M.Qiu, X.Qin, “Feedback Dynamic Algorithms for Preemptable Job Scheduling in

 Cloud System”, IEEE, 2010.

[6] C.H.Hsu, T.L.Chen, “Adaptive Scheduling based on QoS in Heterogeneous Environment”,

 IEEE, 2010.

[7] Gaetano F.Anastasi, Emanuele Carlini, and Patrizio Dazzi,”Smart Cloud Federation

 Simulations with CloudSim”,ACM-ARMACloud’13”,June 17,2013.

[8] R.Kannika Devi and S.Sujan,”A Survey on application of CloudSim toolkit in Cloud

 Computing”,IJSRSET Vol. 3,Issue 6, June 2014.

[9] S.M.Ranbhise and K.K.Joshi,”Simulation and Analysis of Cloud Environment”,IJARCST

 Vol. 2, Issue 4,Oct-Dec. 2014.

[10] Baptiste Louis, Karan Mithra, Saguna and Saguna,”CloudSimDisk:Energy-Aware storage

 simulation in CloudSim”,IEEE/ACM DOI 10.1109/UCC 2015.

http://www.ijntse.com/

Dr. M. Moorthy / International Journal of New Technologies in Science and Engineering
Vol. 5, Issue. 10, 2018, ISSN 2349-0780

Available online @ www.ijntse.com 34

[11] Law Siew Xue,Nazatul Aini Ahd Majid, and Elangovan A.Sundarajan,”Quality of Service

 evaluation of IaaS modeler allocation”,ACM ISBN 978-1-4503-4868-2/2017, Malaysia.

[12] Hanan Ali Al-shehri and Khaoula Hamdi,” Energy-Aware Multi-Objective Placement of

 Virtual Machines in Cloud Data Centers”, ACM-ICBBS '18, June 23–25, 2018, Shenzhen,

 China.

M. Moorthy has received his Ph.D. from Anna University, Chennai in Computer Science and

MCA from Manonmaniam Sundaranar University, Tirunelveli. He is Professor and Head of

Department in MCA, Muthayammal Engineering College, Namakkal, Tamil Nadu, India. His

research interest includes Computer Networking, Network Security, Wireless Network, Data

Mining, and Artificial Intelligence. He is a life member of ISTE, CSI, and IAENG.

Bibliography of the author

http://www.ijntse.com/

